python-matplotlib-scatter

Introduction to Python Matplotlib Scatter

In This Article, You Will Learn About Python Matplotlib Scatter.

Python Matplotlib Scatter – Before moving ahead, let’s take a look at Python Matplotlib Subplots

Table of Contents

Create Scatter Plots

To draw scatter graph, we can use scatter() function with Pyplot.

Its scatter() function plots one dot for every observation. It requires two arrays of equal length for one for the values on the x-axis and another for values on the y-axis.

Example: Plot a scatter graph.

				
					import matplotlib.pyplot as plt
import numpy as np

x_axis = np.array([10, 18, 25, 36, 48])
y_axis = np.array([20, 26, 17, 31, 29])
plt.scatter(x_axis, y_axis)

plt.show()

				
			
python-matplotlib-scatter

Compare Plots or Multiple Scatter Plot

Example: Draw two scatter graphs at the exact figure.

				
					import matplotlib.pyplot as plt
import numpy as np

#plot 1
x_axis = np.array([10, 18, 25, 36, 48])
y_axis = np.array([20, 26, 17, 31, 29])
plt.scatter(x_axis, y_axis)

#plot 2
x = np.array([10, 18, 25, 36, 48])
y = np.array([5, 21, 15, 26, 29])
plt.scatter(x, y)

plt.show()

				
			

Notice: The two plots are plotted using two colors. By default, orange and blue, you’ll learn to switch colors later in this lesson.

Colors

We can pass argument color or c in the scatter() function to set color for each scatter plot.

Example: Set the color to the scatter point.

				
					import matplotlib.pyplot as plt
import numpy as np

#plot 1
x_axis = np.array([10, 18, 25, 36, 48])
y_axis = np.array([20, 26, 17, 31, 29])
plt.scatter(x_axis, y_axis, color = 'green')

#plot 2
x = np.array([10, 18, 25, 36, 48])
y = np.array([5, 21, 15, 26, 29])
plt.scatter(x, y, color = '#90EE90')

plt.show()

				
			
python-matplotlib-scatter

Color Each Dot

Bypassing an array of colors, we can set each dot’s color in the scatter graph as a value of argument color or c.

Note: You cannot use color argument for this; you can only use argument c.

Example: Set any color to each dot of the scatter graph.

				
					import matplotlib.pyplot as plt
import numpy as np

x_axis = np.array([10, 18, 25, 36, 48])
y_axis = np.array([20, 26, 17, 31, 29])
colors = np.array(['green', 'red', 'brown', 'yellow', 'gray']) 

plt.scatter(x_axis, y_axis, c = colors)

plt.show()

				
			
python-matplotlib-scatter

ColorMap

The Matplotlib provides several available colormaps.

A colormap is a list of colors, where each color has a value that ranges from 0 to 100.

In Matplotlib, the colormap is said ‘virdis’ and it ranges from 0, which is a purple color, and up to 100, which is a yellow color.

Use the ColorMap

To use colormap, we can pass argument cmap with the value of colormap. In this case ‘Dark2‘ is one of the built-in colormaps available in Matplotlib.

Additionally, you need to build an array that contains values (from 0 to 100) each for each point in the scatter graph.

Example: Pass an array with random value as a value of colormap to set color to scatter graph.

				
					import matplotlib.pyplot as plt
import numpy as np

x_axis = np.array([10, 18, 25, 36, 48])
y_axis = np.array([20, 26, 17, 31, 29])

colors = np.array([0, 10, 25, 38, 45]) 

plt.scatter(x_axis, y_axis, cmap = 'Dark2')

plt.show()

				
			
python-matplotlib-scatter

To include colormap in drawing, we can use colorbar() function.

Example: Use colorbar() function to add colormap to scatter graph.

				
					import matplotlib.pyplot as plt
import numpy as np

x_axis = np.array([10, 18, 25, 36, 48])
y_axis = np.array([20, 26, 17, 31, 29])

colors = np.array([0, 10, 25, 38, 45]) 

plt.scatter(x_axis, y_axis, cmap = 'Dark2')

plt.colorbar()

plt.show()

				
			
python-matplotlib-scatter

Available ColorMaps

You can choose any color to work with scatter graph.

Name

Reverse

Accent

Accent_r

Blues

Blues_r

BrBG

BrBG_r

BuGn

BuGn_r

BuPu

BuPu_r

CMRmap

CMRmap_r

Dark2

Dark2_r

GnBu

GnBu_r

Greens

Greens_r

Greys

Greys_r

OrRd

OrRd_r

Oranges

Oranges_r

PRGn

PRGn_r

Paired

Paired_r

Pastel1

Pastel1_r

Pastel2

Pastel2_r

PiYG

PiYG_r

PuBu

PuBu_r

PuBuGn

PuBuGn_r

PuOr

PuOr_r

PuRd

PuRd_r

Purples

Purples_r

RdBu

RdBu_r

RdGy

RdGy_r

RdPu

RdPu_r

RdYlBu

RdYlBu_r

RdYlGn

RdYlGn_r

Reds

Reds_r

Set1

Set1_r

Set2

Set2_r

Set3

Set3_r

Spectral

Spectral_r

Wistia

Wistia_r

YlGn

YlGn_r

YlGnBu

YlGnBu_r

YlOrBr

YlOrBr_r

YlOrRd

YlOrRd_r

afmhot

afmhot_r

autumn

autumn_r

binary

binary_r

bone

bone_r

brg

brg_r

bwr

bwr_r

cividis

cividis_r

cool

cool_r

coolwarm

coolwarm_r

copper

copper_r

cubehelix

cubehelix_r

flag

flag_r

gist_earth

gist_earth_r

gist_gray

gist_gray_r

gist_heat

gist_heat_r

gist_ncar

gist_ncar_r

gist_rainbow

gist_rainbow_r

gist_stern

gist_stern_r

gist_yarg

gist_yarg_r

gnuplot

gnuplot_r

gnuplot2

gnuplot2_r

gray

gray_r

hot

hot_r

hsv

hsv_r

inferno

inferno_r

jet

jet_r

magma

magma_r

nipy_spectral

nipy_spectral_r

ocean

ocean_r

pink

pink_r

plasma

plasma_r

prism

prism_r

rainbow

rainbow_r

seismic

seismic_r

spring

spring_r

summer

summer_r

tab10

tab10_r

tab20

tab20_r

tab20b

tab20b_r

tab20c

tab20c_r

terrain

terrain_r

twilight

Twilight_r

twilight_shifted

twilight_shifted_r

viridis

Viridis_r

winter

winter_r

Let’s take a look at anothre color from above table.

Example: Use colorbar() function to add colormap to scatter graph.

				
					import matplotlib.pyplot as plt
import numpy as np

x_axis = np.array([10, 18, 25, 36, 48])
y_axis = np.array([20, 26, 17, 31, 29])

colors = np.array([0, 10, 25, 38, 45]) 

plt.scatter(x_axis, y_axis, cmap = 'ocean')
plt.colorbar()

plt.show()

				
			
python-matplotlib-scatter

Size

You can alter the size of dots by using the argument s.

As with colors, be sure that the array for sizes is of the same length of the arrays that are for x- and y-axis.

Example: Use colorbar() function to add colormap to scatter graph.

				
					import matplotlib.pyplot as plt
import numpy as np

x_axis = np.array([10, 18, 25, 36, 48])
y_axis = np.array([20, 26, 17, 31, 29])

sizes = np.array([0, 10, 25, 38, 45]) 

plt.scatter(x_axis, y_axis, s = sizes)

plt.show()

				
			

Alpha

You can set the transparency of dots by using the argument alpha.

As with colors, be sure that the array for sizes is of the same length of the arrays that are for x- and y-axis.

Example:  Set the transparency of each dots of scatter graph.

				
					import matplotlib.pyplot as plt
import numpy as np

x_axis = np.array([10, 18, 25, 36, 48])
y_axis = np.array([20, 26, 17, 31, 29])

sizes = np.array([0, 10, 25, 38, 45]) 

plt.scatter(x_axis, y_axis, s = sizes, alpha = 0.8)

plt.show()

				
			
python-matplotlib-scatter

Combine Color Size and Alpha

Matplot allows combining a colormap with different sizes on the dots.

Example: Using randint() function to create random arrays with 50 values for x-points, y-points, colors and sizes.

				
					import matplotlib.pyplot as plt
import numpy as np

x = np.random.randint(50, size=(50))
y = np.random.randint(50, size=(50))

colors = np.random.randint(50, size=(50))

sizes = 10 * np.random.randint(50, size=(50))

plt.scatter(x, y, c=colors, s=sizes, alpha=0.5, cmap='RdGy_r')

plt.colorbar()

plt.show()

				
			

If you find anything incorrect in the above-discussed topic and have any further questions, please comment below.

Connect on:

Recent Post

Popular Post

Top Articles

Archives
Categories

Share on